

Copyright © 2011 The Software Defined Radio Forum Inc - All Rights Reserved

Request for Comment on Generalization of
the Resource Factory Concept

Working Document WINNF-10-RFI-0005

Version V2.0.0
24 January 2011

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page i
All Rights Reserved

TERMS, CONDITIONS & NOTICES

This document has been prepared by the SCA Next Work Group to assist The Software Defined
Radio Forum Inc. (or its successors or assigns, hereafter “the Forum”). It may be amended or
withdrawn at a later time and it is not binding on any member of the Forum or of the SCA Next
Work Group.

Contributors to this document that have submitted copyrighted materials (the Submission) to the
Forum for use in this document retain copyright ownership of their original work, while at the
same time granting the Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-free
license under the Submitter’s copyrights in the Submission to reproduce, distribute, publish,
display, perform, and create derivative works of the Submission based on that original work for
the purpose of developing this document under the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this document for
legitimate purposes of the Forum. Copying for monetary gain or for other non-Forum related
purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,
AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT
THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS
MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE
WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS
DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the specification set forth in this document, and to provide
supporting documentation.

This document was developed following the Forum's policy on restricted or controlled
information (Policy 009) to ensure that that the document can be shared openly with other
member organizations around the world. Additional Information on this policy can be found
here: http://www.wirelessinnovation.org/page/Policies_and_Procedures

Although this document contains no restricted or controlled information, the specific
implementation of concepts contain herein may be controlled under the laws of the country of
origin for that implementation. Readers are encouraged, therefore, to consult with a cognizant
authority prior to any further development.

Wireless Innovation Forum ™ and SDR Forum ™ are trademarks of the Software Defined Radio
Forum Inc.

http://www.wirelessinnovation.org/page/Policies_and_Procedures�

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page ii
All Rights Reserved

Table of Contents

TERMS, CONDITIONS & NOTICES .. i
Preface.. iii
1 Description of Enhancement ...1
2 Rationale for Change...1
3 Impacts ..1
4 Recommended Changes ..2
5 Appendix A – Interface Definition Language ...29

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page iii
All Rights Reserved

Preface
In August 2009, the JPEO and its JTRS SCA Next Working Panel, invited the WINNF to assist
it in developing the specification of a new release of the SCA whose working title is “SCA
Next.” The WINNF created a “SCA Next Work Group” to coordinate this work and informed
the JTRS SCA Next Working Panel that the WINNF wished to take the lead on developing
solutions for two of the previously defined Change Proposals: S047 “Develop CORBA/e and
CORBA Services wording” and S013 “SCA Architectural Consistency”, as well as offer
comments and suggestions for many of the other change proposals.

As part of the consideration of architectural consistency, the WINNF explored the idea of
generalizing the Resource Factory concept to allow it to be used to create platform components,
such as, Devices and Services, and concluded that this was a useful option for many of the same
reasons Resource Factories are useful, especially to allow co-locating platform components into
a single address space.

The WINNF SCA Next Work Group is pleased to contribute the attached document describing
the concept and the required changes to the SCA specification. This document is being send
to you at this time for your consideration and comments. However, the WINNF intends to
continue the work and suggest specific wording changes to the SCA specification and modified
DTDs to accomplish the changes suggested here. This additional document will be sent to you
when we complete that task. Note that this relates to Change Proposal S013. The WINNF
requests your consideration and invite your comments.

Please respond with your comments to the WINNF SCA Next Work Group Chair: Terry
Anderson, terry.anderson@itt.com.

mailto:terry.anderson@itt.com�

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 1
All Rights Reserved

Request for Comment on Generalization of Resource
Factory Concept

1 Description of Enhancement
The ComponentFactory provides architectural consistency since it now allows both the platform
and application components to be created using a factory. The ComponentFactory can also be
used as a platform independent means of collocating several components into a single address
space. The ResourceFactory currently provides this capability but only for application
Resources.

2 Rationale for Change
The ComponentFactory provides architectural consistency since it now allows both the platform
and application components to be created using a factory. There is no obvious reason why the
factory concept has not been available for devices and services.

The ComponentFactory can also be used as a platform independent means of collocating several
components into a single address space. The ResourceFactory currently provides this capability
but only for application Resources. Collocation of several components into a single address
space provides significant footprint savings, improves real-time performances, and reduces
deployment time of components. Similar savings can be achieved using implementation
techniques such as the use of shared libraries. But these techniques are specific to operating
environments, thus it affects portability of components. The use of a component factory is the
only platform-independent technique which provides the benefits of address space collocation.

3 Impacts
On Existing CF/Applications Existing applications will need to be updated only if they

use Resource factories. The required modifications would
be minimal. Modifications would consist in transforming
the Resource factories into Component factories which are
very similar in APIs.

 Minor impact for Core Framework that does not support

this optional feature. The impact is related to the new
optional tag in the DCD and to a new component type in
the SCD.

On in-dev
CF/Applications: none.

On existing CP: none.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 2
All Rights Reserved

4 Recommended Changes
Change the specification to allow the DeviceManager to instantiate Device and service
components using a generic ComponentFactory. The ComponentFactory creates CORBA
Objects that can be narrowed to the proper component type. The ComponentFactory shall replace
the ResourceFactory. This involves changing the SCA Specification document to describe the
ComponentFactory and to describe how the ApplicationFactory and the DeviceManager may use
a ComponentFactory.

The use of a ComponentFactory is optional. Platforms are neither required to use them or to
support their use, but if a ComponentFactory is provided it can be used to create any types of
component that can be launched via a DCD or a SAD. For instance the ComponentFactory could
create a Resource, a Device or a service.

Here is the list of changes required to the Specification version 2.2.2.

Note that highlighting
is used in many places to emphasize the parts that should change.

Change #0: Section 2.4
Amend Figure 2-2 to show the ComponentFactory under the DeviceManager and change the
ResourceFactory box for the ComponentFactory.

Change #1: Section 2.2.2
From:
Base Application Interfaces: Port, LifeCycle, TestableObject, PropertySet, PortSupplier,
ResourceFactory, and Resource), which provide the management and control interfaces for all
system software components.

To:
Base Application Interfaces: Port, LifeCycle, TestableObject, PropertySet, PortSupplier,
ComponentFactory, and Resource), which provide the management and control interfaces for all
system software components.

Change #2: Section 3.1.2.2.1
From:
A log producer is a CF component (e.g., DomainManager, Application, ApplicationFactory,
DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,
ResourceFactory) that produces log records using the Lightweight Log Service
CosLwLog::LogProducer interface. Log records are of type CosLwLog::ProducerLogRecord.

To:
A log producer is a CF component (e.g., DomainManager, Application, ApplicationFactory,
DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,
ComponentFactory) that produces log records using the Lightweight Log Service
CosLwLog::LogProducer interface. Log records are of type CosLwLog::ProducerLogRecord.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 3
All Rights Reserved

Change #3: Section 3.1.3
From:
Figure 3-2 depicts the key elements of the CF and the IDL relationships between these elements. A
DomainManager component manages the software applications, application factories, hardware
devices (represented by software devices) and device managers within the system. Some software
components may directly control the system’s internal hardware devices; these components are
logical devices, which implement the Device, LoadableDevice, or ExecutableDevice interfaces.
Other software components have no direct relationship with a hardware device, but perform
application services for the user and implement the Resource interface. This interface provides a
consistent way of configuring and tearing down these components. Each resource can potentially
communicate with other resources. An application is a specific collection of one or more resources
which provides a specified service or function and which is managed through the Application
interface. The resources of an application are allocated to one or more hardware devices by the
application factory based upon various factors including the current availability of hardware devices,
the behavior rules of a resource, and the loading requirements of each resource. The resources may
then be created by using the ResourceFactory interface or through the Device interfaces (Device,
LoadableDevice, or ExecutableDevice) an connected to other resources or devices resident on the
system.

To:
Figure 3-2 depicts the key elements of the CF and the IDL relationships between these elements. A
DomainManager component manages the software applications, application factories, hardware
devices (represented by software devices) and device managers within the system. Some software
components may directly control the system’s internal hardware devices; these components are
logical devices, which implement the Device, LoadableDevice, or ExecutableDevice interfaces.
Other software components have no direct relationship with a hardware device, but perform
application services for the user and implement the Resource interface. This interface provides a
consistent way of configuring and tearing down these components. Each resource can potentially
communicate with other resources. An application is a specific collection of one or more resources
which provides a specified service or function and which is managed through the Application
interface. The resources of an application are allocated to one or more hardware devices by the
application factory based upon various factors including the current availability of hardware devices,
the behavior rules of a resource, and the loading requirements of each resource. The resources may
then be created by using the ComponentFactory interface or through the Device interfaces (Device,
LoadableDevice, or ExecutableDevice) and connected to other resources or devices resident on the
system.

Change #4: Section 3.1.3.1.7
Section “3.1.3.1.7 ResourceFactory” should be renamed to “ComponentFactory” and moved out
of the section “3.1.3.1 Base Application Interfaces”. The content of the section should be as
follows:

3.1.3.1.7 ComponentFactory

3.1.3.1.7.1
A component factory is used to create and tear down resources, devices, and services. The
ComponentFactory interface is designed after the Factory Design Patterns. The ComponentFactory

Description

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 4
All Rights Reserved

interface UML is depicted in Figure 3-9. The factory mechanism provides client-server isolation
among components and provides a standard mechanism of obtaining a component without knowing
its identity. An application is not required to use component factories to obtain, create, or tear down
resources. Similarly, a DeviceManager is not required to use component factories to obtain, create, or
tear down devices and services. Software profiles specify which component factories are to be used
by the ApplicationFactory and the DeviceManager.

When the ComponentFactory is used to launch application components, it is limited to using the OS
services that are designated as mandatory in the SCA AEP. However, when the ComponentFactory is
not used to launch application components, it is not limited to using the OS services designated as
mandatory by the SCA AEP.

When used to create platform components, the ComponentFactory shall only create Devices or
services. When used to create application components, the ComponentFactory shall only create
Resources. The ComponentFactory shall not be used to create a ComponentFactory .

3.1.3.1.7.2

UML

Figure 3-9: ComponentFactory Interface UML

3.1.3.1.7.3

Types

3.1.3.1.7.3.1 CreateComponentFailure

The CreateComponentFailure exception indicates that the createComponent operation failed to create
the component. The error number shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.

exception CreateComponentFailure { ErrorNumberType errorNumber;
string msg; };

3.1.3.1.7.4

Attributes

3.1.3.1.7.4.1 identifier

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 5
All Rights Reserved

The readonly identifier attribute shall contain the unique identifier for a ComponentFactory instance.
readonly attribute string identifier;

3.1.3.1.7.5

Operations

3.1.3.1.7.5.1 createComponent

3.1.3.1.7.5.1.1 Brief Rationale

The createComponent operation provides the capability to create components in the same process
space as the component factory. This behavior is an alternative approach to the Device::execute
operation for creating a component.

3.1.3.1.7.5.1.2 Synopsis

CORBA::Object createComponent (in string componentId, in Properties
qualifiers) raises (CreateComponentFailure);

3.1.3.1.7.5.1.3 Behavior

The componentId parameter is the identifier for a component. The qualifiers parameter contains
values used by the factory in creation of the component. The ApplicationFactory and the
DeviceManager determine the values to be supplied for the qualifiers from the description in the
component factory’s software profile. The qualifiers may be used to identify, for example, specific
subtypes of components created by a component factory.

The createComponent operation shall create a component if no component exists for the given
componentId and shall assign the given componentId to the new component. The createComponent
operation shall set a reference count to one, when the component is created.

3.1.3.1.7.5.1.4 Returns

The createComponent operation shall return a reference to the created component.

3.1.3.1.7.5.1.5 Exceptions/Errors

The createComponent operation shall raise the CreateComponentFailure exception when it cannot
create the component or when the component already exists.

3.1.3.1.7.5.2 releaseComponent

3.1.3.1.7.5.2.1 Brief Rationale

In CORBA there is client side and server side representation of a component. The releaseComponent
operation provides the mechanism of releasing the component in the CORBA environment on the
server side when all clients are through with a specific component. The client still has to release its
client side reference of the component.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 6
All Rights Reserved

3.1.3.1.7.5.2.2 Synopsis

boolean releaseComponent (in string componentId);

3.1.3.1.7.5.2.3 Behavior

The releaseComponent operation shall decrement the reference count for the specified component, as
indicated by the componentId parameter. The releaseComponent operation shall release the
component from the CORBA environment and make the component no longer available when the
component’s reference count is zero.

3.1.3.1.7.5.2.4 Returns

This operation returns true if the release was successful. False will be returned if an invalid
componentId is specified.

3.1.3.1.7.5.3 getComponent

3.1.3.1.7.5.3.1 Brief Rationale

The getComponent operation provides the capability to return a reference to a component that has
already been created.

3.1.3.1.7.5.3.2 Synopsis

CORBA::Object getComponent(in string componentId);

3.1.3.1.7.5.3.3 Behavior

The componentId parameter is the identifier for a component. The getComponent operation shall
return a reference to an existing component identified by the componentId parameter and shall
increment the reference count by one for the specified component. The reference count is used to
indicate the number of times that a specific component reference has been given to requesting clients.
This ensures that the component factory does not release a component that has a reference count
greater than zero (0). When multiple clients have obtained a reference to the same component, each
client requests release of the component when it is through with the component. However, the
component is not released until the release request comes from the last client in existence.

3.1.3.1.7.5.3.4 Returns

The getComponent operation shall return a reference to the existing component.

3.1.3.1.7.5.3.5 Exceptions/Errors

The getComponent operation shall return a nil CORBA object reference when the component does
not exists.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 7
All Rights Reserved

Change #5: Section 3.1.3.2.1.6.1.3
From:
The Application::releaseObject operation shall release each application component not created by a
resource factory by utilizing the component’s Resource::releaseObject operation. The
Application::releaseObject operation shall release each component created by a resource factory via
the ResourceFactory::releaseResource operation. The Application::releaseObject operation shall
terminate a resource factory when no more resources are managed by the resource factory via the
ResourceFactory::shutdown operation. The Application::releaseObject operation shall terminate the
processes / tasks on allocated executable devices belonging to each application component by
utilizing the ExecutableDevice:terminate operation.

To:
The Application::releaseObject operation shall release each application component not created by a
component factory by utilizing the component’s Resource::releaseObject operation. The
Application::releaseObject operation shall release each component created by a component factory
via the ComponentFactory::releaseComponent operation. The Application::releaseObject operation
shall terminate a component factory when no more components are managed by the component
factory via the ComponentFactory::releaseObject operation. The Application::releaseObject
operation shall terminate the processes / tasks on allocated executable devices belonging to each
application component by utilizing the ExecutableDevice:terminate operation.

From:
For components (e.g., Resource, ResourceFactory) that are registered with Naming Service, the
releaseObject operation shall unbind those components and destroy the associated naming contexts
as necessary from the Naming Service.

To:
For components (e.g., Resource, ComponentFactory) that are registered with Naming Service, the
releaseObject operation shall unbind those components and destroy the associated naming contexts
as necessary from the Naming Service.

From:
The following steps demonstrate one scenario of the application’s behavior for the release of an
application that contains ResourceFactory behavior:

1. Client invokes releaseObject operation.

2. Disconnect Ports.

3. Release the ResourceFactory components.

4. Shutdown the ResourceFactory components.

5. Release the Resource components.

6. Terminate the components’ processes.

7. Unload the components’ executable images.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 8
All Rights Reserved

8. Change the state of the associated devices to be available, along with device(s) memory

utilization availability and processor utilization availability based upon the Device
Profile and software profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the application was either successfully or unsuccessfully

released.

11. Remove the application reference from the applications attribute and generate an event to

indicate the application has been removed from the domain.

To:
The following steps demonstrate one scenario of the application’s behavior for the release of an
application that contains ResourceFactory behavior:

1. Client invokes releaseObject operation.

2. Disconnect Ports.

3. Release the ComponentFactory components.

4. Release the ComponentFactory.

5. Release the Resource components.

6. Terminate the components and ComponentFactories’ processes.

7. Unload the components and ComponentFactories’ executable images.

8. Change the state of the associated devices to be available, along with device(s) memory

utilization availability and processor utilization availability based upon the Device
Profile and software profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the application was either successfully or unsuccessfully

released.

11. Remove the application reference from the applications attribute and generate an event to

indicate the application has been removed from the domain.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 9
All Rights Reserved

Change #6: Figure 3-11 Application Behavior
Change the messages number 3 and 4 to the following:
3: releaseComponent()
4: releaseObject()

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 10
All Rights Reserved

Change #7: Section 3.1.3.2.2.5.1.3
From:
The create operation validates all component-device associations in the input deviceAssignments
parameter by verifying that the device indicated by the assignedDeviceId element provides the
necessary capacities and properties required by the component indicated by the componentId
element. Device assignments should not be given for resources created via a resource factory since
instantiation of these Resources is controlled by the creating ResourceFactory.

To:
The create operation validates all component-device associations in the input deviceAssignments
parameter by verifying that the device indicated by the assignedDeviceId element provides the
necessary capacities and properties required by the component indicated by the componentId
element. Device assignments should not be given for resources created via a ComponentFactory
since instantiation of these resources is controlled by the creating ComponentFactory.

From:
Upon execution of a software module by the create operation, a Resource or a ResourceFactory
component shall register with the Naming Service. The create operation uses
"ComponentName_UniqueIdentifier" to retrieve the component’s CORBA object reference from the
Naming Context IOR.

To:
Upon execution of a software module by the create operation, a ComponentFactory or a Resource
created via an ExecutableDevice shall register with the Naming Service. The create operation uses
"ComponentName_UniqueIdentifier" to retrieve the component’s CORBA object reference from the
Naming Context IOR.

From:
The create operation shall include the mandatory execute parameters Naming Context IOR, Name
Binding, and Component Identifier, as described in this section, in the parameters parameter of the
ExecutableDevice::execute operation when the CORBA instance’s componentinstantiation element
of the SAD contains a findcomponent element with a namingservice sub-element.

The execute parameter for the Naming Context IOR shall be a CF Properties type with an id element
set to "NAMING_CONTEXT_IOR" and a value element set to the stringified IOR of the naming
context to which the component will bind. The create operation shall create any naming contexts that
do not exist but which are required for successful binding to the Naming Context IOR. The structure
of the naming context path shall be "/ DomainName / [optional naming context sequences]". In the
naming context path, each "slash" (/) represents a separate naming context.

The Name Binding execute parameter shall be a CF Properties type with an id element set to
"NAME_BINDING" and a value element set to a string in the format of
"ComponentName_UniqueIdentifier". The ComponentName value is the SAD
componentinstantiation findcomponent namingservice element’s name attribute. The
UniqueIdentifier is determined by the implementation. The Name Binding parameter is used by the
component to bind its object reference to the Naming Context IOR parameter.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 11
All Rights Reserved

The Component Identifier execute parameter shall be a CF Properties type with an id element set to
"COMPONENT_IDENTIFIER" and a value element set to a string in the format of
“Component_Instantiation_Identifier: Application_Name”. The Component_Instantiation_Identifier
is the componentinstantiation element id attribute for the component in the application’s SAD file.
The Application_Name field shall be identical to the create operation’s input name parameter. The
Application_Name field provides a specific instance qualifier for executed components.

To:
When the create operation creates a component via an ExecutableDevice, it shall include the three
mandatory execute parameters Naming Context IOR, Name Binding, and Component Identifier, as
described in this section, in the parameters parameter of the ExecutableDevice::execute operation
when the CORBA instance’s componentinstantiation element of the SAD contains a findcomponent
element with a namingservice sub-element. However, when the create operation creates a component
via a ComponentFactory, it shall provide the Component Identifier parameter but not the Naming
Context IOR and Name Binding parameters.

When a ComponentFactory is created or when a Resource is created via an ExecutableDevice, the
execute parameter for the Naming Context IOR shall be a CF Properties type with an id element set
to "NAMING_CONTEXT_IOR" and a value element set to the stringified IOR of the naming
context to which the component will bind. The create operation shall create any naming contexts that
do not exist but which are required for successful binding to the Naming Context IOR. The structure
of the naming context path shall be "/ DomainName / [optional naming context sequences]". In the
naming context path, each "slash" (/) represents a separate naming context.

When a ComponentFactory is created or when a Resource is created via an ExecutableDevice, the
Name Binding execute parameter shall be a CF Properties type with an id element set to
"NAME_BINDING" and a value element set to a string in the format of
"ComponentName_UniqueIdentifier". The ComponentName value is the SAD
componentinstantiation findcomponent namingservice element’s name attribute. The
UniqueIdentifier is determined by the implementation. The Name Binding parameter is used by the
component to bind its object reference to the Naming Context IOR parameter.

When a ComponentFactory is created or when a Resource is created via an ExecutableDevice, the
Component Identifier execute parameter shall be a CF Properties type with an id element set to
"COMPONENT_IDENTIFIER" and a value element set to a string in the format of
“Component_Instantiation_Identifier: Application_Name”. The Component_Instantiation_Identifier
is the componentinstantiation element id attribute for the component in the application’s SAD file.
The Application_Name field shall be identical to the create operation’s input name parameter. The
Application_Name field provides a specific instance qualifier for executed components. When a
Resource is created via a ComponentFactory, the Component Identifier shall be passed as the
qualifiers parameter to the referenced ComponentFactory component’s createComponent operation.

From:
The create operation shall pass the values of the “execparam” properties of the
componentinstantiation componentproperties element contained in the SAD, as parameters to the
execute operation. The create operation passes “execparam” parameters values as string values.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 12
All Rights Reserved

To:
When a Resource is created via an ExecutableDevice, the create operation shall pass the values of the
“execparam” properties of the componentinstantiation componentproperties element contained in the
SAD, as parameters to the execute operation. The create operation passes “execparam” parameters
values as string values.

From:
The create operation obtains a resource in accordance with the SAD via the CORBA Naming Service
or a resource factory. The ResourceFactory object reference is obtained by using the CORBA
Naming Service. The create operation, when creating a resource from a resource factory, shall pass
the componentinstantiation componentresourcefactoryref element properties whose kindtype element
is factoryparam as the qualifiers parameter to the referenced ResourceFactory component’s
createResource operation.

To:
The create operation obtains a resource in accordance with the SAD via the CORBA Naming Service
or a ComponentFactory. The ComponentFactory object reference is obtained by using the CORBA
Naming Service. The create operation, when creating a resource from a ComponentFactory, shall
pass the componentinstantiation componentfactoryref element properties whose kindtype element is
factoryparam as the qualifiers parameter to the referenced ComponentFactory component’s
createComponent operation.

From:

6. Obtain the object reference (Resource or ResourceFactory) as described by the SAD.

7. If the component obtained from the CORBA Naming Service is a resource factory as
indicated by the SAD, then narrow the object reference to be a ResourceFactory
component.

8. If the component is a ResourceFactory, then create a resource using the ResourceFactory

interface.

To:

6. Obtain the object reference (Resource or ComponentFactory) as described by the SAD.

7. If the component obtained from the CORBA Naming Service is a ComponentFactory as
indicated by the SAD, then narrow the object reference to be a ComponentFactory
component.

8. If the component is a ComponentFactory, then create a resource using the

ComponentFactory interface.

Change #8: Figure 3-13 ApplicationFactory Behavior

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 13
All Rights Reserved

Firgure 3-13 needs to be updated. The object instance called “ResourceFactory” must be
renamed to “ComponentFactory”. Also, the ComponentFactory must be initialized before it is
used by the ApplicationFactory. This means the figure must have a new message inserted
between messages 7 and 8. The new message must be labeled as “initialize”. Finally, the
message number 8 must be relabeled as ”createComponent”

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 14
All Rights Reserved

Change #9: Section: 3.1.3.2.4.5 General Behavior
From:
The device manager shall supply execute operation parameters for a device consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string that is
the DeviceManager stringified IOR.

2. Profile Name – The ID is “PROFILE_NAME” and the value is a CORBA string that is the

full mounted file system file path name.

3. Device Identifier – The ID is “DEVICE_ID” and the value is a string that corresponds to
the DCD componentinstantiation id attribute.

4. Device Label – The ID is “DEVICE_LABEL” and the value is a string that corresponds to

the DCD componentinstantiation usage element. This parameter is only used when
the DCD componentinstantiation usage element is specified.

5. Composite Device IOR - The ID is “Composite_DEVICE_IOR” and the value is a string

that is an AggregateDevice stringified IOR. This parameter is only used when the
DCD componentinstantiation element represents the child device of another
componentinstantiation element.

6. The execute (“execparam”) properties as specified in the DCD for a

componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and values
as string values.

The device manager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, for the execute operation options parameters.
The device manager shall initialize and then configure logical devices that are started by the device
manager, after they have successfully registered with the device manager. The device manager shall
configure a DCD’s componentinstantiation element provided the componentinstantiation element has
“configure” readwrite or writeonly properties with values. Figure 3-19 depicts a device manager
startup scenario.

If a service is deployed by the device manager, the device manager shall supply execute operation
parameters consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string that is
the DeviceManager stringified IOR.

2. Service Name – The ID is “SERVICE_NAME” and the value is a string that corresponds

to the DCD componentinstantiation usagename element.

3. The execute (“execparam”) properties as specified in the DCD for a

componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 15
All Rights Reserved

parameters. The device manager shall pass “execparam” parameters’ IDs and values
as string values.

To:

The DeviceManager can launch Devices, ComponentFactories and services directly (e.g. thread,
posix_spawn) or by using an ExecutableDevice. The Devices deployed this way shall register with
the launching DeviceManager via registerDevice while ComponentFactories and services shall
register via registerService. Upon successful registration, the Devices shall be added to the
registeredDevices attribute of the DeviceManager while the ComponentFactories and services shall
be added to the registeredServices attributes of the DeviceManager. Devices and services deployed
using a ComponentFactory shall not register with the launching DeviceManager, however the
DeviceManager shall add the Devices and services to the attributes registredDevices and
registeredServices respectively.

3.1.3.2.4.5.1 Direct Launch

When a device is deployed directly (e.g. thread, posix_spawn) or by using an ExecutableDevice, the
DeviceManager shall supply execute operation parameters for a device consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string that is
the DeviceManager stringified IOR.

2. Profile Name – The ID is “PROFILE_NAME” and the value is a CORBA string that is the

full mounted file system file path name.

3. Device Identifier – The ID is “DEVICE_ID” and the value is a string that corresponds to
the DCD componentinstantiation id attribute.

4. Device Label – The ID is “DEVICE_LABEL” and the value is a string that corresponds to

the DCD componentinstantiation usage element. This parameter is only used when
the DCD componentinstantiation usage element is specified.

5. Composite Device IOR - The ID is “Composite_DEVICE_IOR” and the value is a string

that is an AggregateDevice stringified IOR. This parameter is only used when the
DCD componentinstantiation element represents the child device of another
componentinstantiation element.

6. The execute (“execparam”) properties as specified in the DCD for a

componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and values
as string values.

The device manager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, for the execute operation options parameters.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 16
All Rights Reserved

The device manager shall initialize and then configure logical devices that are launched by the device
manager, after they have successfully registered with the device manager. The device manager shall
configure a DCD’s componentinstantiation element provided the componentinstantiation element has
“configure” readwrite or writeonly properties with values. Figure 3-19 depicts a device manager
startup scenario.

If a ComponentFactory or a service is laucnhed by the device manager, the device manager shall
supply execute operation parameters consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string that is
the DeviceManager stringified IOR.

2. Service Name – The ID is “SERVICE_NAME” and the value is a string that corresponds

to the DCD componentinstantiation usagename element.

3. The execute (“execparam”) properties as specified in the DCD for a

componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and values
as string values.

3.1.3.2.4.5.2 ComponentFactory Launch

When a device is deployed via a ComponentFactory, the DeviceManager shall supply the following
properties as the qualifiers parameter to the referenced ComponentFactory createComponent
operation.

1. Profile Name – The ID is “PROFILE_NAME” and the value is a CORBA string that is the
full mounted file system file path name.

2. Device Identifier – The ID is “DEVICE_ID” and the value is a string that corresponds to

the DCD componentinstantiation id attribute.

3. Device Label – The ID is “DEVICE_LABEL” and the value is a string that corresponds to

the DCD componentinstantiation usage element. This parameter is only used when
the DCD componentinstantiation usage element is specified.

4. Composite Device IOR - The ID is “Composite_DEVICE_IOR” and the value is a string

that is an AggregateDevice stringified IOR. This parameter is only used when the
DCD componentinstantiation element represents the child device of another
componentinstantiation element.

5. The componentinstantiation componentfactoryref element properties whose kindtype

element is factoryparam

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 17
All Rights Reserved

The device manager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, as qualifiers parameters for the createComponent
operation.

When a service is deployed via a ComponentFactory, the device manager shall supply the following
properties as the qualifiers parameter to the referenced ComponentFactory component’s
createComponent operation.

1. Service Name – The ID is “SERVICE_NAME” and the value is a string that corresponds
to the DCD componentinstantiation usagename element.

2. The componentinstantiation componentfactoryref element properties whose kindtype

element is factoryparam

Change #10: Section 3.1.3.5.2
From:
A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ResourceFactory, Device). A Software Component Descriptor file shall have
a “.scd.xml” extension. A Software Component Descriptor file contains information about the
interfaces that a component provides and/or uses. A Software Component Descriptor for a Device
type has a reference to Device Package Descriptor file.

To:
A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ComponentFactory, Device). A Software Component Descriptor file shall
have a “.scd.xml” extension. A Software Component Descriptor file contains information about the
interfaces that a component provides and/or uses. A Software Component Descriptor for a Device
type has a reference to Device Package Descriptor file.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 18
All Rights Reserved

Change #11: Section 3.2.1.3
From:
Applications shall implement the Base Application Interfaces as specified in section 3.1.3.1 using the
corresponding IDL in Appendix C. Use of the ResourceFactory interface per section 3.1.3.1.7 is
optional.

To:
Applications shall implement the Base Application Interfaces as specified in section 3.1.3.1 using the
corresponding IDL in Appendix C. Use of the ComponentFactory interface per section 3.1.3.1.7 by
the ApplicationFactory is optional. Use of the ComponentFactory interface per section 3.1.3.1.7 by
the DeviceManager is optional.

Appendix D

Change #12: Section D.2.1 Software Package (last paragraph)
From:
Any duplicate properties having the same ID are ignored. Duplicated properties must be the
same property type, only the value can be over-ridden. The implementation properties are only
used for the initial configuration and creation of a component by the CF ApplicationFactory and
cannot be referenced by a SAD componentinstantiation, componentproperties or
resourcefactoryproperties element.

To:
Any duplicate properties having the same ID are ignored. Duplicated properties must be the
same property type, only the value can be over-ridden. The implementation properties are only
used for the initial configuration and creation of a component by the CF ApplicationFactory and
cannot be referenced by a SAD componentinstantiation, componentproperties or
componentfactoryproperties element.

Change #13: D.4.1.1.6 kind
From:
1. configure, which is used in the configure and query operations of the CF Resource interface.
The application factory will use the configure kind of properties to build the CF Properties input
parameter to the configure operation that is invoked on the assemblycontroller component during
application creation. The device manager will use the configure kind of properties to build the
CF Properties input parameter to the configure operation that is invoked on components
implementing the Device interface, during device creation. The application factory will also use
the configure kind of properties for CF ResourceFactory create options parameters. When the
mode is readonly, only the query behavior is supported. When the mode is writeonly, only the
configure behavior is supported. When the mode is readwrite, both configure and query are
supported.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 19
All Rights Reserved

To:
1. configure, which is used in the configure and query operations of the CF Resource interface.
The application factory will use the configure kind of properties to build the CF Properties input
parameter to the configure operation that is invoked on the assemblycontroller component during
application creation. The device manager will use the configure kind of properties to build the
CF Properties input parameter to the configure operation that is invoked on components
implementing the Device interface, during device creation. The application factory will also use
the configure kind of properties for CF ComponentFactory create options parameters. When the
mode is readonly, only the query behavior is supported. When the mode is writeonly, only the
configure behavior is supported. When the mode is readwrite, both configure and query are
supported.

Change #14: Section D.4.1.1.6 kind
From:
5. factoryparam, which is used in the createResource operations of the CF ResourceFactory
interface. The CF ApplicationFactory will use the factoryparam type of properties to build the
CF Properties input parameter to the createResource operation.

To:
5. factoryparam, which is used in the createComponent operations of the CF ComponentFactory
interface. The CF ApplicationFactory will use the factoryparam type of properties to build the
CF Properties input parameter to the createComponent operation.

Change #15: Section D.4.1.4.1 configurationkind
From:
2. factoryparam, which is used in the createResource operations of the CF ResourceFactory
interface. The CF ApplicationFactory will use the factoryparam kind of properties to build the
CF Properties input parameter to the createResource() operation. A property can have multiple
configurationkind elements and their default kindtype is “configure”.

To:
2. factoryparam, which is used in the createComponent operations of the CF ComponentFactory
interface. The CF ApplicationFactory will use the factoryparam kind of properties to build the
CF Properties input parameter to the createComponent() operation. A property can have multiple
configurationkind elements and their default kindtype is “configure”.

Change #16: Section D.5 SOFTWARE COMPONENT DESCRIPTOR
From:
This descriptor file is based on the CORBA Component Descriptor specification. The SCA
components CF Resource, CF Device, and CF ResourceFactory that are described by the
software component descriptor are based on the SCA CF specification, and the following
specification concentrates on definition of the elements necessary for describing the ports and
interfaces of these components.

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 20
All Rights Reserved

To:
This descriptor file is based on the CORBA Component Descriptor specification. The SCA
components CF Resource, CF Device, and CF componentFactory that are described by the
software component descriptor are based on the SCA CF specification, and the following
specification concentrates on definition of the elements necessary for describing the ports and
interfaces of these components.

Change #17: Section D.5.1.2 componentrepid
From:
The componentrepid uniquely identifies the interface that the component is implementing. The
componentrepid may be referred to by the componentfeatures element. The componentrepid is
derived from the CF Resource, CF Device, or CF ResourceFactory.

To:
The componentrepid uniquely identifies the interface that the component is implementing. The
componentrepid may be referred to by the componentfeatures element. The componentrepid is
derived from the CF Resource, CF Device, or CF ComponentFactory.

Change #18: Section D.5.1.3 componenttype
From:
The componenttype describes properties of the component. For SCA components, the
component types include resource, device, resourcefactory, domainmanager, log, filesystem,
filemanager, devicemanager, namingservice and eventservice.

To:
The componenttype describes properties of the component. For SCA components, the
component types include resource, device, componentfactory, domainmanager, log, filesystem,
filemanager, devicemanager, namingservice and eventservice.

Change #19: Section D.5.1.4 componentfeatures
From:
The componentfeatures element (see Figure D-18) is used to describe a component with respect
to the components that it inherits from, the interfaces the component supports, and its provides
and uses ports. At a minimum, the component interface has to be a CF Resource, CF
ResourceFactory, or CF Device interface. If a component extends the CF Resource or CF Device
interface then all the inherited interfaces (e.g., CF Resource) are depicted as supportsinterface
elements.

To:
The componentfeatures element (see Figure D-18) is used to describe a component with respect
to the components that it inherits from, the interfaces the component supports, and its provides
and uses ports. At a minimum, the component interface has to be a CF Resource, CF
ComponentFactory, or CF Device interface. If a component extends the CF Resource or CF

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 21
All Rights Reserved

Device interface then all the inherited interfaces (e.g., CF Resource) are depicted as
supportsinterface elements.

Change #20: Section D.6.1.3.1 componentplacement
From:
The componentplacement element (see Figure D-22) defines a particular deployment of a
component. The component can be deployed either directly or by using a CF ResourceFactory. .

To:
The componentplacement element (see Figure D-22) defines a particular deployment of a
component. The component can be deployed either directly or by using a CF ComponentFactory.

Change #21: Section D.6.1.3.3 componentinstantiation (second paragraph)
From:
1. The SAD partitioning : componentplacement : componentinstantiation : findcomponent :
componentresourcefactoryref : resourcefactoryproperties element,

To:
1. The SAD partitioning : componentplacement : componentinstantiation : findcomponent :
componentfactoryref : componentfactoryproperties element,

Change #22: Section D.6.1.3.3 componentinstantiation (forth paragraph)
From:
1. The componentresourcefactoryref element, which refers to a particular CF ResourceFactory
componentinstantiation element found in the SAD, which is used to obtain a CF Resource
instance for this componentinstantiation element. The refid attribute refers to a unique
componentinstantiation id attribute. The componentresourcefactoryref element contains an
optional resourcefactoryproperties element (see Figure D-26), which specifies the properties
“qualifiers”, for the CF ResourceFactory create call.

To:
1. The componentfactoryref element, which refers to a particular CF ComponentFactory
componentinstantiation element found in the SAD, which is used to obtain a CF Resource
instance for this componentinstantiation element. The refid attribute refers to a unique
componentinstantiation id attribute. The componentfactoryref element contains an optional
componentfactoryproperties element (see Figure D-26), which specifies the properties
“qualifiers”, for the CF ComponentFactory create call.

Change #23: Section D.6.1.3.3 componentinstantiation (figure D-25)
From:

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 22
All Rights Reserved

« DTDElement »
findcomponent

« DTDChoiceGroup »
findcomponent_grp

(from findcomponent)

« DTDElement »
componentresourcefactoryref

 Refid : CDATA

« DTDElementEMPTY »
namimgservice

 Refid : CDATA

Figure D-25. findcomponent Element Relationships

<!ELEMENT findcomponent
(componentresourcefactoryref | namingservice)>

To:

Figure D-25. findcomponent Element Relationships

<!ELEMENT findcomponent
(componentfactoryref | namingservice)>

Change #24: Section D.6.1.3.3 componentinstantiation (figureD-26)
From:
<!ELEMENT componentresourcefactoryref

(resourcefactoryproperties?)>
<!ATTLIST componentresourcefactoryref
refid CDATA #REQUIRED>

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 23
All Rights Reserved

« DTDElement »
resourcefactoryproperties

« DTDChoiceGroup »
resourcefactoryproperties_grp

(from resourcefactoryproperties)

« DTDElementEMPTY »
simpleref

 Refid : CDATA
 Value : CDATA

« DTDElement »
simplesequenceref

 Refid : CDATA

« DTDElement »
structref

 Refid : CDATA

« DTDElement »
structsequenceref

 Refid : CDATA

Figure D-26. resourcefactoryproperties Element Relationships

<!ELEMENT resourcefactoryproperties
(simpleref | simplesequenceref | structref | structsequenceref)+
>

To:
<!ELEMENT componentfactoryref

(componentfactoryproperties?)>
<!ATTLIST componentfactoryref

refid CDATA #REQUIRED>

« DTDElementEMPTY »
simpleref

 Refid : CDATA
 Value : CDATA

« DTDElement »
simplesequenceref

 Refid : CDATA

« DTDElement »
structref

 Refid : CDATA

« DTDElement »
structsequenceref

 Refid : CDATA

« DTDElement »
componentfactoryproperties

« DTDChoiceGroup »
componentfactoryproperties_grp

(from componentfactoryproperties)

Figure D-26. componentfactoryproperties Element Relationships

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 24
All Rights Reserved

<!ELEMENT componentfactoryproperties
(simpleref | simplesequenceref | structref | structsequenceref)+
>

Change 25: Section D.7.1.4.1.6 componentinstantiation (after first paragraph)
From:
The componentinstantiation element (see Figure D-35) is intended to describe a particular
instantiation of a component relative to a componentplacement element. The
componentinstantiation‘s id attribute is a DCE UUID that uniquely identifier the component. The id
is a DCE UUID value as specified in section D.2.1. The componentinstantiation contains a
usagename element that is intended for an applicable name for the component. The optional
componentproperties element (see Figure D-36) is a list of property values that are used in
configuring the component. D.6.1.3.3 defines the property list for the componentinstantiation
element, which contains initial properties values. For a component service type (e.g,, Log), the
usagename element is not optional and needs to be unique for each service type.

Figure D-35. componentinstantiation Element Relationships

<!ELEMENT componentinstantiation
(usagename?
,componentproperties?
)>

<!ATTLIST componentinstantiation
id ID #REQUIRED>
<!ELEMENT usagename (#PCDATA)>

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 25
All Rights Reserved

« DTDElement »
componentproperties

« DTDChoiceGroup »
componentproperties_grp

(from componentproperties)

« DTDElementEMPTY »
simpleref

 Refid : CDATA
 Value : CDATA

« DTDElement »
simplesequenceref

 Refid : CDATA

« DTDElement »
structref

 Refid : CDATA

« DTDElement »
structsequenceref

 Refid : CDATA

Figure D-36. componentproperties Element Relationships

<!ELEMENT componentproperties
(simpleref | simplesequenceref | structref |
structsequenceref)+ >

<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>
<!ELEMENT simplesequenceref
(values)>
<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>
<!ELEMENT structref
(simpleref+)>
<!ATTLIST structref
refid CDATA #REQUIRED>
<!ELEMENT structsequenceref
(structvalue+)>
<!ATTLIST structsequenceref
refid CDATA #REQUIRED>
<!ELEMENT structvalue
(simpleref+)>

<!ELEMENT values
(value+)>

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 26
All Rights Reserved

<!ELEMENT value (#PCDATA)>

To:

The componentinstantiation element (see Figure D-35) is intended to describe a particular
instantiation of a component relative to a componentplacement element. The
componentinstantiation‘s id attribute is a DCE UUID that uniquely identifier the component. The id
is a DCE UUID value as specified in section D.2.1. The componentinstantiation contains a
usagename element that is intended for an applicable name for the component. The optional
componentproperties element (see Figure D-36) is a list of property values that are used in
configuring the component. D.6.1.3.3 defines the property list for the componentinstantiation
element, which contains initial properties values. For a component service type (e.g,, Log), the
usagename element is not optional and needs to be unique for each service type.

The optional componentfactoryref element (see Figure D-36) refers to a particular CF
ComponentFactory componentinstantiation element found in the DCD, which is used to obtain a CF
Device or a CF Service instance for this componentinstantiation element. The refid attribute refers to
a unique componentinstantiation id attribute. The componentfactoryref element contains an optional
componentfactoryproperties element (see Figure D-37’’), which specifies the properties “qualifiers”,
for the CF ComponentFactory create call. The optional componentfactoryref element should be
specified only when a ComponentFactory is used to create Device or Service components.

Figure D-36. componentproperties Element Relationships

<!ELEMENT componentinstantiation

(usagename?
, componentproperties?
, componentfactoryref?

)>
<!ATTLIST componentinstantiation

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 27
All Rights Reserved

id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

« DTDElement »
componentproperties

« DTDChoiceGroup »
componentproperties_grp

(from componentproperties)

« DTDElementEMPTY »
simpleref

 Refid : CDATA
 Value : CDATA

« DTDElement »
simplesequenceref

 Refid : CDATA

« DTDElement »
structref

 Refid : CDATA

« DTDElement »
structsequenceref

 Refid : CDATA

Figure D-36. componentproperties Element Relationships

<!ELEMENT componentproperties
(simpleref | simplesequenceref | structref |
structsequenceref)+ >

<!ELEMENT componentfactoryref

(componentfactoryproperties?)>
<!ATTLIST componentfactoryref

refid CDATA #REQUIRED>

« DTDElementEMPTY »
simpleref

 Refid : CDATA
 Value : CDATA

« DTDElement »
simplesequenceref

 Refid : CDATA

« DTDElement »
structref

 Refid : CDATA

« DTDElement »
structsequenceref

 Refid : CDATA

« DTDElement »
componentfactoryproperties

« DTDChoiceGroup »
componentfactoryproperties_grp

(from componentfactoryproperties)

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 28
All Rights Reserved

Figure D-36’. componentfactoryproperties Element Relationships

<!ELEMENT componentfactoryproperties
(simpleref | simplesequenceref | structref | structsequenceref)+
>
<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>
<!ELEMENT simplesequenceref
(values)>
<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>
<!ELEMENT structref
(simpleref+)>
<!ATTLIST structref
refid CDATA #REQUIRED>
<!ELEMENT structsequenceref
(structvalue+)>
<!ATTLIST structsequenceref
refid CDATA #REQUIRED>
<!ELEMENT structvalue
(simpleref+)>

<!ELEMENT values
(value+)>
<!ELEMENT value (#PCDATA)>

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 29
All Rights Reserved

5 Appendix A – Interface Definition Language

/* A ComponentFactory can be used to create and destroy a
Component. */

interface ComponentFactory extends LifeCycle

{

/* The CreateComponentFailure exception indicates that the
createComponent operation failed to create the Component. The
message is component-dependent, providing additional information
describing the reason for the error. */

exception CreateComponentFailure {

CF::ErrorNumberType errorNumber;

string msg;

};

/* The readonly identifier attribute contains the unique identifier
for a ComponentFactory instance. */

readonly attribute string identifier;

/* The createComponent operation provides the capability to create
Components. */

CORBA::Object createComponent(in string componentId,

 in CF::Properties qualifiers)

raises (CF::ComponentFactory::CreateComponentFailure);

/* The getComponent operation provides the capability to obtain a
component that was previously created. When the component does not
exists a nil CORBA object reference is returned */

CORBA::Object getComponent(in string componentId);

/* In CORBA there is client side and server side representation of
a Component. This operation provides the mechanism of releasing the
component in the CORBA environment on the server side. This method

 SCA Next Working Group
Component Factory RFC

 WINNF-10-RFI-0005-V2.0.0

Copyright © 2011 The Software Defined Radio Forum Inc Page 30
All Rights Reserved

should only be called once since the server will be destroyed. The
client still has to release its client side reference of the
Component. true is returned indicating that the component server
has been successfully released, otherwise false is returned
indicating that no component was released i.e. server did not
exists*/

boolean releaseComponent(in string ComponentId);

};

	1 Description of Enhancement
	2 Rationale for Change
	3 Impacts
	4 Recommended Changes
	5 Appendix A – Interface Definition Language

